

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Advanced Topics

Registering the MessagingBackend globally

To instantiate a publishers or a consumer, you need to pass
a MessagingBackend as a constructor argument. Depending on the circumstances,
however, this might feel repetitive.

As an alternative, you could use the singleton BackendManager and register
a backend for global usage in your initialization code:

` py
BackendManager().use_backend(AWSBackend())
`

From that point forward, any instantiation of a Publisher or Consumer
does not need a backend as an argument anymore. Revisiting one of the
recurring examples of this documentation, we could use the BackendManager
like this.

``` py
from melange.message_publisher import QueuePublisher
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.backends.sqs.backend_manager import BackendManager
from melange.serializers.pickle import PickleSerializer


	class MyTestMessage:
	
	def __init__(self, message: str) -> None:
	self.message = message







	if __name__ == “__main__”:
	backend = LocalSQSBackend(host=”localhost”, port=9324)
serializer = PickleSerializer()
BackendManager().use_backend(backend)

publisher = QueuePublisher(serializer)
message = MyTestMessage(“Hello World!”)
publisher.publish(“melangetutorial-queue”, message)
print(“Message sent successfully!”)





```

Notice that we are not passing the backend now as a parameter
when creating the QueuePublisher object, since it will retrieve
it from the BackendManager.

> NOTE: Use the BackendManager with caution though.
> Singletons are [regarded sometimes as an antipattern](https://stackoverflow.com/questions/12755539/why-is-singleton-considered-an-anti-pattern)
depending on the situation, and dependency injection is usually regarded
as a cleaner solution to construct objects.

Message de-duplication

Distributed architectures are hard, complex and come with a good deal of burdens, but they are required to achieve levels of scalability
and isolation harder to achieve on monolithic architectures. One of this issues is the possibility of
of the same message being received twice by the listeners. Network failures, application crashes, etc…
can cause this issue which, if not though or left undealt can cause your system to be out of sync and
run in an inconsistent state. This is why you need to take measures.

One of this measures is to, simply, write your listeners to be idempotent. This means that it does not
matter how many times a listener is called, the result will be the same and it won’t impact or leave
the system into an inconsistent state.

However, sometimes writing idempotent code is just not possible. You require message deduplication to
account for this and ensure that a message won’t be sent twice. You could use Amazon SQS FIFO Queues which
they say they provide this message deduplication, though not only FIFO queues are more expensive than
standard ones, [but exactly-once delivery is just impossible](https://dzone.com/articles/fifo-exactly-once-and-other-costs).
In Melange we have accounted for this with a cache interface that you can supply
to the ConsumerHandler (like a Redis cache) that will control that no message is delivered twice to the same consumer.

In Melange we provide a RedisCache class that you could use to perform this message deduplication. However
we do not want to tie the library to any specific technology, so as long as you comply
with the DeduplicationCache interface it will work just fine.

> The cache for message deduplication is completely optional, but on a production environment having some
kind of cache to handle deduplication is encouraged.

This is the DeduplicationCache specification:

::: melange.infrastructure.cache.DeduplicationCache

 # API reference

Publishers

::: melange.publishers

—

Consumers

::: melange.consumers

—

Messaging Backend Factory

::: melange.backends.factory

—

Serializers

::: melange.serializers.interfaces
::: melange.serializers.json
::: melange.serializers.pickle

—

Messaging Backends

::: melange.backends.interfaces
::: melange.backends.backend_manager
::: melange.backends.sqs.sqs_backend

 # Behind the scenes

How are messages serialized

Messages, when serialized, they have the shape of a string. Some serializing formats
might not require anything more that the message itself (like pickle).
The message itself contains headers of some kind that tells deserializers
how they have to deserialize that message (assuming you already know you
always have to use that specific serializer). Other formats (like protobuf)
require some kind of specification that tells the consumers how the message
needs to be deserialized.

This is why manifests exist and are necessary. A manifest tells the aplicacion which shape
(manifestation) an array of bytes or a string had. This way we can appropriately
choose the serializer that is able to properly deserialize the message.

Imagine we want to serialize an object with a serializer that performs encryption as well:

``` py
@dataclass
class ProductCreated:


id: int
name: str




event = ProductCreated(1, “Banana”)
serialzer = MyCryptographicSerializer()
serialized_event = serializer.serialize(event)
# Let’s say serialized_event has this content:
# a&/(67567ulmtensr/((&/…29747JJJ
```

If we just sent that string to an outsider, how does it know that is a ProductCreated
which has been serialized with a special serializer?

However, with the aid of the manifest, we can give some clue to the
deserializer on how that message was serialized:

``` py
@dataclass
class ProductCreated:


id: int
name: str




event = ProductCreated(1, “Banana”)
serialzer = MyCryptographicSerializer()
serialized_event = serializer.serialize(event)
# Let’s say serialized_event has this content:
# a&/(67567ulmtensr/((&/…29747JJJ
manifest = serializer.manifest(event)
# manifest could be something like mycryptoserializer:sha1:ProductCreated
```

That way we tell the consumer who has to deserialize the message that
the message was serialized with the MyCryptographicSerializer, with a SHA1
algorithm, and that it is a ProductCreated event. The publishers, when
sending the message, they send the manifest as well as the serialized message
to provide the consumers with this valuable information. The manifest
could be sent through the means of metadata (if your messaging infrastructure
supports it) or through any other means that could be retrieved by the consumer.

 # Factory

Although you could set up your own topics and queues in your infrastructure
(e.g. by using terraform) you can rely on

Personally I have no strong feelings over defining your queues and topics through
an infrastructure-as-code framework or letting the application create it’s own
queues and topics (as long as it has the appropriate permissions to do so). In any
case, Melange offers a factory to create queues and topics for you with the
MessagingBackendFactory.

The factory initialization methods are idempotent. If a queue or a topic already exist, they will
keep the same queue or topic, but override any settings or customizations that you
might have manually set in your PaaS platform.

Creating a queue

Let’s say you’d wish to create an Amazon SQS queue to listen to the events for a
payment service. You could invoke the factory as follows:

``` py
from melange.backends.sqs.sqs_backend import AWSBackend
from melange.backends.factory import MessagingBackendFactory

backend = AWSBackend()
factory = MessagingBackendFactory(backend)
factory.init_queue(“payment-updates.fifo”)
```

This will create a FIFO queue payment-updates in your AWS account (remember to
appropriately set the AWS variables since the SQS backend uses boto behind the
scenes).

You could also define a dead letter queue for messages that could not
be delivered successfully:

``` py
from melange.backends.sqs.sqs_backend import AWSBackend
from melange.backends.factory import MessagingBackendFactory

backend = AWSBackend()
factory = MessagingBackendFactory(backend)
factory.init_queue(“payment-updates.fifo”, dead_letter_queue_name=”payment-updates.fifo”)
```

Creating a topic

Topics apply the fan-out pattern to send the message to anyone who is subscribed
to them. They are useful to decouple your consumers from your application
so that they don’t need to know who they are sending their messages to. With
the factory you could create a topic like this:

``` py
from melange.backends.sqs.sqs_backend import AWSBackend
from melange.backends.factory import MessagingBackendFactory

backend = AWSBackend()
factory = MessagingBackendFactory(backend)
factory.init_topic(“my-topic”)
```

For the AWSBackend this will create an SNS topic.

Creating a queue and subscribing it to several topics

You could create a queue and immediately subscribe it to a number of topics:

``` py
from melange.backends.sqs.sqs_backend import AWSBackend
from melange.backends.factory import MessagingBackendFactory

backend = AWSBackend()
factory = MessagingBackendFactory(backend)
factory.init_queue(


“payment-updates.fifo”,
“my-topic-1”,
“my-topic-2”,
“my-topic-3”,
dead_letter_queue_name=”payment-updates.fifo”)




```

This will create the topics my-topic-1, my-topic-2 and my-topic-3,
then create the payment-updates.fifo queue, and subscribe it to the
aforementioned topics. It will create the dead letter queue too.

 # Mixed bag of ideas

Interesting links and articles

	[Effective aggregate design by Vaughn Vernon](https://www.dddcommunity.org/library/vernon_2011/)

	[Domain Events - Salvation by Udi Dahan](http://udidahan.com/2009/06/14/domain-events-salvation/)

 # Roadmap

Multiple serializers

Right now, you can only supply one serializer to a publisher or a consumer,
and the same serializer will always be used for all the messages published and received.
This could be extended to support multiple serializers, and then let
the library choose the appropriate library to use depending on the type
of the message or the attached manifest. That way you could even implement
serializer versioning (e.g. have different versions of the same serializer)

The akka framework implements a [similar concept](https://doc.akka.io/docs/akka/current/serialization.html).

Kombu integration

Maybe The Messaging Backends could be entirely replaced with Kombu, since kombu already
offers an abstraction layer over several messaging brokers. Undergo some
kind of proof of concept to see if such a thing is possible and how.

Kafka integration

Kafka is a powerful messaging broker technology that covers lots
of features and functionalities that could provide some ideas
to the current features that melange provides.

 # Testing

Any developer worth its salt does some kind of testing over the code they
develop. However, testing software that spans several processes/threads (like when you do pub/sub over
a queue/topic) can be a daunting task.

Melange offers several utilities to help you test your publishers
and consumers (or just making everything synchronous inside the context of the
test for the sake of simplicity). Here some examples are presented on how you
could potentially use the library in your tests.

Asynchronous testing with threads

Follow the next steps whenever you need to have one or more consumers running on the
background of your test:

	Make sure to create (or ensure that they exist at least) the queues and topics where the
message exchange happens.

	
	Start the consumer loop in a separate thread, and make sure the thread is stopped upon
	termination of the test.

3. Call your code that invokes the publishing methods, and have probes in place
that poll the environment to check whether the consumers have done their work or not before
doing any kind of assertion that requires of the consumers’ results.

	Bonus: After the test is finished, delete the queue/topic to keep the environment clean.

Full Example:

``` py
import os
import threading
from dataclasses import dataclass
from typing import Optional, Dict

import polling
from hamcrest import *

from melange.backends.factory import MessagingBackendFactory
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.consumers import Consumer, SimpleMessageDispatcher
from melange.examples.doc_examples.probe import Probe
from melange.publishers import QueuePublisher
from melange.serializers.pickle import PickleSerializer


	class StateProbe(Probe):
	
	def __init__(
	self, state: “State”



	) -> None:
	self.state = state



	def sample(self) -> None:
	pass



	def can_be_measured(self) -> bool:
	self.sample()
return self.state.value_set is not None



	def wait(self) -> None:
	
	try:
	polling.poll(self.can_be_measured, 1, timeout=60)



	except polling.TimeoutException as e:
	raise Exception(“Timeout!”) from e













@dataclass
class State:


value_set: Optional[int] = None





	def test_async_consumer(request):
	serializer = PickleSerializer()

# We’ll use the ElasticMQ as backend since it works like a real SQS queue
backend = LocalSQSBackend(


host=os.environ.get(“SQSHOST”), port=os.environ.get(“SQSPORT”)




)
queue_name = “testqueue”

# Initialize the queue
queue = MessagingBackendFactory(backend).init_queue(queue_name)

# Delete the queue upon finishing the execution of the test
def teardown():


backend.delete_queue(queue)




request.addfinalizer(teardown)

# Create a consumer that, upon receiving a message, will set
# the variable “value set” to later assert that this value
# has, indeed, been set by the consumer that is running on another thread
state = State()
def set_state(message: Dict) -> None:


state.value_set = message[“value”]




consumer = Consumer(on_message=set_state)
handler = SimpleMessageDispatcher(consumer, serializer, backend=backend)
# Start the consumer loop thread to run the consumer loop in the background
threading.Thread(target=lambda: handler.consume_loop(queue_name), daemon=True).start()

# Publish a message and…
publisher = QueuePublisher(serializer, backend)
publisher.publish(queue_name, {“value”: 1})

# …wait until the value is set
probe = StateProbe(state)
probe.wait()

assert_that(state.value_set, is_(1))





```

This kind of test has the advantage of being very explicit in the sense that it expresses, through the probe,
that this test has some asynchronous processing in the background, and waits for it.
It’s quite realistic as well, pub/sub is asynchronous in its nature and we work with
it in this test.

However the arrangement is complex. It’s a trade-off between completeness and complexity that you have to embrace
if you want to follow this route.

> TIP: Try to abstract away all this arrangement code from the main body of the test
> to keep it clean and clear, avoiding pollution. Testing frameworks have different
> techniques to abstract away arrangements (like pytest fixtures).

Synchronous testing with the InMemoryMessagingBackend

Another option is to use the bundled InMemoryMessagingBackend when instantiating your
publishers and consumers. This will make the entirety of the test synchronous in respect
to the message passing.

``` py
from melange.backends.testing import InMemoryMessagingBackend, link_synchronously
from melange.consumers import Consumer
from melange.publishers import QueuePublisher
from melange.serializers.pickle import PickleSerializer


	def test_inmemory_messaging_backend():
	consumer_1 = Consumer(lambda message: print(f”Hello {message[‘message’]}!”))
consumer_2 = Consumer(lambda message: print(f”Hello {message[‘message’]} 2!”))

serializer = PickleSerializer()
backend = InMemoryMessagingBackend()
link_synchronously(“somequeue”, [consumer_1, consumer_2], serializer, backend)

publisher = QueuePublisher(PickleSerializer(), backend=backend)
publisher.publish(“somequeue”, {“message”: “Mary”})





```

What the InMemoryMessagingBackend does, upon
publish, is to store the serialized message in memory and
forward it to the internal consumer dispatcher, so that
the consumers can synchronously receive and process the message.

The link_synchronously function is a helper which glues everything together. All the
messages sent to the queue or topic with
that name will be dispatched to those consumers (if the consumers accept that message).

 # Message Dispatchers and Consumers

Message Dispatcher and Consumers are the counterpart of the publishers.
Consumers attach themselves to a Message Dispatcher, and the message dispatchers start the consuming loop
and receive the messages from a queue, forwarding them to a consumer that accepts
that message.

Consumers

Consumers are very simple, since they only receive a Message as a parameter and then
they do some kind of processing to send it down to the lower layers of your application (something like a REST view/controller).
To mplement a consumer with Melange one of the approaches is to subclass the Consumer class
and implement the process method, and, optionally, the accepts method.

Example (from examples/payment_service/consumer_draft.py):

``` py
from typing import Any, Optional

from melange.consumers import Consumer
from melange.examples.common.commands import DoPayment
from melange.examples.payment_service.events import OrderResponse
from melange.examples.payment_service.service import PaymentService


	class PaymentConsumer(Consumer):
	
	def __init__(self, payment_service: PaymentService):
	super().__init__()
self.payment_service = payment_service



	def process(self, message: Any, **kwargs: Any) -> None:
	
	if isinstance(message, OrderResponse):
	self.payment_service.process(message)



	elif isinstance(message, DoPayment):
	self.payment_service.do_payment(message)







	def accepts(self, manifest: Optional[str]) -> bool:
	return manifest in [“OrderResponse”, “DoPayment”]









```

There is a variation of the Consumer, the SingleDispatchConsumer consumer. It relies
on the singledispatch library to implement method overloading on the process function,
in order to achieve a richer accepts and process methods. This has proven to make the development
of complex consumers faster and cleaner.

The same PaymentConsumer as above, but implemented by subclassing SingleDispatchConsumer
(from examples/payment_service/consumer.py):

``` py
from melange.consumers import SingleDispatchConsumer, consumer
from melange.examples.common.commands import DoPayment
from melange.examples.payment_service.events import OrderResponse
from melange.examples.payment_service.service import PaymentService


	class PaymentConsumer(SingleDispatchConsumer):
	
	def __init__(self, payment_service: PaymentService):
	super().__init__()
self.payment_service = payment_service





@consumer
def consume_order_response(self, event: OrderResponse) -> None:


self.payment_service.process(event)




@consumer
def consume_do_payment(self, command: DoPayment) -> None:


self.payment_service.do_payment(command)








```

For a consumer to be able to receive messages it requires to be attached to a MessageDispatcher

Message Dispatcher

As summarized on top of this article, the MessageDispatcher component/class is the responsible to:

	Start the polling loop to get new messages through the MessagingBackend.

	Deserialize the message with the appropriate MessageSerializer.

	Pass the message to the consumers that accept it for further processing.

	Acknowledge the message.

There is a variation of the MessageDispatcher called SimpleMessageDispatcher
which is essentially the same as the former, but when you have only one consumer.

This is the specification of the MessageDispatcher class:

::: melange.message_dispatcher.MessageDispatcher

> NOTE: Unless the always_ack is set to True, a message will only be acknowleged if
> it’s been correcly processed by all consumers that accept the message.
> Unless [message deduplication](link) is in place, if a consumers fails the same
> message is going to be reprocessed again by all the consumers, which can lead to issues.
> Either use only one consumer per MessageDispatcher, make your consumers idempotent,
> or set a DeduplicationCache when instantiating the MessageDispatcher.

 # Messaging backends

A messaging backend is a wrapper over your message broker. It exposes
several methods that abstract the broker functionality, making it simpler to work with.

Out of the box Melange provides you with three messaging backends: The AWSBackend,
the RabbitMQBackend and the LocalSQSBackend.

Writing your own Messaging Backend

Subclass the MessagingBackend interface and implement all the methods of that
class. Here is the documentation of the interface class and all its methods:

::: melange.backends.interfaces

 # Publishers

Publishers, as implied by the name, publish messages to a message broker,
which are then propagated/stored into a queue for consumers/subscribers to
process.

You can publish messages to queues or topics.

Publishing to a queue

Publishing a message to a queue makes this message available
to a single consumer (that’s the concept of a queue after all).
To do that, build an instance of the QueuePublisher class and
call the publish method with your message:

``` py
from melange.message_publisher import QueuePublisher
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.serializers.pickle import PickleSerializer


	class MyTestMessage:
	
	def __init__(self, message: str) -> None:
	self.message = message







	if __name__ == “__main__”:
	backend = LocalSQSBackend(host=”localhost”, port=9324)
serializer = PickleSerializer()
publisher = QueuePublisher(serializer, backend)
message = MyTestMessage(“Hello World!”)
publisher.publish(“melangetutorial-queue”, message)
print(“Message sent successfully!”)





```

The QueuePublisher requires a [backend](messaging-backends.md) and a
[serializer](serializers.md) as constructor parameters. The serializer
is necessary to properly serialize and send the message to the messaging backend.

> TIP: In a production project where you would have a proper
> dependency injection framework in place (e.g. [pinject](https://github.com/google/pinject)), you could instantiate
> the Publisher once and provide that instance through your application

Publishing to a topic

Publishing a message to a topic works exactly the same way as publishing
to a queue, but it will work with the [Fanout pattern](https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/)
to distribute the message to several subscribers of that topic.
To do that, build an instance of the TopicPublisher class and
call the publish method with your message:

``` py
from melange.message_publisher import TopicPublisher
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.serializers.pickle import PickleSerializer


	class MyTestMessage:
	
	def __init__(self, message: str) -> None:
	self.message = message







	if __name__ == “__main__”:
	backend = LocalSQSBackend(host=”localhost”, port=9324)
serializer = PickleSerializer()
publisher = TopicPublisher(serializer, backend)
message = MyTestMessage(“Hello World!”)
publisher.publish(“melangetutorial-topic”, message)
print(“Message sent successfully!”)





```

As you can appreciate it works exactly the same way as publishing to a queue,
the only difference happens behind the scenes.

 # Serializers

Serializers are the component that translates (serializes) your python objects into a
string that can be sent through the messaging infrastructure, and then
translates it (deserializes) that string back to the python object.

Melange is bundled with two serializers: a JSONSerializer to
serialize python dictionaries and a PickleSerializer that will
serialize any python object, but will only be deserializable from
another python process and it’s generally regarded as unsafe).

When instantiating a publisher or a consumer you need to pass a list
of serializers. Melange, upon sending or receiving messages, will
select the serializer that best matches the one that can serialize and
deserialize it.

TODO: Implement the serializer selector from a list

Creating your own serializers

To create your own serializer, you need to inherit the class
MessageSerializer and implement the methods manifest, deserialize
and serialize.

This is the MessageSerializer interface:

::: melange.serializers.interfaces

Some ideas of custom serializers:

	A protocol buffer serializer: Protocol Buffers (or protobuf for short)

	is a fast and compact serializing technology. In some projects where Melange
	is used in production such serializer has been implemented successfully.

 # Payment Service

TODO

 # Saga

TODO

 # Tutorial - Getting started

> Talk is cheap, show me the code

Event-driven architectures work with the Publish/Subscribe pattern to achieve decoupling.
With this pattern, publishers and subscribers do not know about each other while they can exchange
information among them. In order to achieve this and communicate effectively a
mediator, or better said, a Message Broker is required to transfer messages from
publishers to subscribers. Clients can subscribe this broker, waiting for events they are interested in,
or publish messages so that the broker can distribute these messages appropriately.

This tutorial assumes that you have basic understanding of the pub/sub
mechanics. If not, there are a whole bunch of resources to get your feet
wet on the topic. Also it’s good to have docker installed since we are
going to spin up local infrastructure to serve as a messaging broker.

Choosing a Messaging Backend

A messaging backend is the infrastructure where your messages are going to be published
and consumed. In this tutorial we are going to use [ElasticMQ](https://github.com/softwaremill/elasticmq)
as our messaging backend. Basically spinning up an ElasticMQ (for example with docker-compose)
in your machine will provide you with an SQS-like infrastructure to use with boto, which
makes it ideal for testing and for the sake of this tutorial. You could follow the instructions
in the ElasticMQ project to install it to your local machine. Though the quickest route
is to launch the docker image:

`
docker run -p 9324:9324 -p 9325:9325 softwaremill/elasticmq-native
`

This will start ElasticMQ in the port 9324 in localhost, ready to be used.

Creating a queue

Before using a queue you need to create it. Put the following code snippet into a
file called create_queue.py and execute it to create the queue:

``` py
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.backends.factory import MessagingBackendFactory

backend = LocalSQSBackend(host=”localhost”, port=9324)
factory = MessagingBackendFactory(backend)
factory.init_queue(“melangetutorial-queue”)
```

Publishing messages

Publishing messages to a queue with Melange is easy. Just create an instance of the message
publisher and publish the message. Put the following code snippet into a file called publish_example.py:

``` py
from melange.message_publisher import QueuePublisher
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.serializers.pickle import PickleSerializer


	class MyTestMessage:
	
	def __init__(self, message: str) -> None:
	self.message = message







	if __name__ == “__main__”:
	backend = LocalSQSBackend(host=”localhost”, port=9324)
serializer = PickleSerializer()
publisher = QueuePublisher(serializer, backend)
message = MyTestMessage(“Hello World!”)
publisher.publish(“melangetutorial-queue”, message)
print(“Message sent successfully!”)





```

Once you run this code it will publish a message MyTestMessage with the contents Hello World in
the queue melangetutorial-queue.
You can send anything as long as your selected serializer can serialize/deserialize
the object. Refer [Serializers](../components/serializers.md) for further details.

> NOTE: For the sake of this tutorial you can use the PickleSerializer to serialize your messages.
For production applications however you should probably use another type of serializer or create your own,
since pickle is [considered unsafe](https://docs.python.org/3/library/pickle.html) and
only works with python consumers.

Consuming messages

It’s good to publish messages, but they are worth nothing if nobody reads them. Therefore,
we need a consumer that reads these messages and reacts to them.

Put the following code snippet in a file called consumer-example.py and run it:

``` py
from melange.consumers import Consumer, ConsumerHandler
from melange.backends.sqs.elasticmq import LocalSQSBackend
from melange.serializers.pickle import PickleSerializer
from publish_example import MyTestMessage


	class MyConsumer(SingleDispatchConsumer):
	@listener
def on_my_test_message_received(self, event: MyTestMessage) -> None:


print(event.message)






	if __name__ == “__main__”:
	backend = LocalSQSBackend(host=”localhost”, port=9324)
serializer = PickleSerializer()
consumer = MyConsumer()
consumer_handler = SimpleMessageDispatcher(


serializer,
backend=backend,




)
print(“Consuming…”)
payment_consumer.consume_loop(“melangetutorial-queue”)





```

Upon hitting the consume_loop method, the process will start polling the queue for new
messages. Once it receives a message, as long as the message is of type MyTestMessage it will
forward this message to the MyConsumer. If your infrastructure was set correctly, every time
you run the publish_example.py script you will see a print with the message on the screen where
the consumer is running.

Congratulations! You just run your very first example of a Pub/Sub mechanism with Melange!

> NOTE: It’s a good idea to have shared classes (like the MyTestMessage in the example) in its
> own python module (e.g. shared.py)

Where to go from here

Now that you grasped the basic idea on how you could use Melange, you could go further and read more
details about:

	[Consumers](../components/consumers.md)

	[Publishers](../components/publishers.md)

	[Messaging Backend](../components/messaging-backends.md)

	[Serializers](../components/serializers.md)

To add to that, although the exposed example is quite simple, it serves as the foundation to implement a number of
use cases and distributed architectures with microservices. With Melange you can:

	Build a CQRS + Event sourcing architecture, where you publish your events to a queue or topic from the Command

side and read those with a consumer from the Read side to create your data projections.
* Build choreography Sagas for long-running processes which can span several transactions.
* Implement microservices which consume messages from a queue to do their job (e.g. an staticstics microservice

that reacts to a OrderCreated event and increments a counter to track how many orders your system has).

We have not covered the case of topics. Refer to [Publishers](../components/publishers.md) for further details.

In addition, Melange is bundled with a consumer that works with a python application. But the consumer
can be implemented in any language and any technology that can read messages from your queue (AWS Lambda, Azure functions,
a NodeJS app…)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

